Utils deep keras
f1(y_true, y_pred)
f1 score, to use as custom metrics
- /! To use with a big batch size /! -
From
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric https://stackoverflow.com/questions/59963911/how-to-write-a-custom-f1-loss-function-with-weighted-average-for-keras
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Ground truth values |
required | |
y_pred |
The predicted values |
required |
Returns: float: metric
Source code in template_vision/models_training/utils_deep_keras.py
f1_loss(y_true, y_pred)
f1 loss, to use as custom loss
- /! To use with a big batch size /! -
From
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric https://stackoverflow.com/questions/59963911/how-to-write-a-custom-f1-loss-function-with-weighted-average-for-keras
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Ground truth values |
required | |
y_pred |
The predicted values |
required |
Returns: float: metric
Source code in template_vision/models_training/utils_deep_keras.py
fb_loss(b, y_true, y_pred)
fB loss, to use as custom loss
- /! To use with a big batch size /! -
From
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric https://stackoverflow.com/questions/59963911/how-to-write-a-custom-f1-loss-function-with-weighted-average-for-keras
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b |
float
|
importance recall in the calculation of the fB score |
required |
y_true |
Ground truth values |
required | |
y_pred |
The predicted values |
required |
Returns: float: metric
Source code in template_vision/models_training/utils_deep_keras.py
get_fb_loss(b=2.0)
Gets a fB-score loss
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b |
float
|
importance recall in the calculation of the fB score |
2.0
|
Returns: Callable: fb_loss
Source code in template_vision/models_training/utils_deep_keras.py
get_weighted_binary_crossentropy(pos_weight=10.0)
Gets a "weighted binary crossentropy" loss From https://stats.stackexchange.com/questions/261128/neural-network-for-multi-label-classification-with-large-number-of-classes-outpu TO BE ADDED IN custom_objects : 'weighted_binary_crossentropy': utils_deep_keras.get_weighted_binary_crossentropy(pos_weight=...)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pos_weight |
float
|
Weight of the positive class, to be tuned |
10.0
|
Returns: Callable: Weighted binary crossentropy loss
Source code in template_vision/models_training/utils_deep_keras.py
precision(y_true, y_pred)
Precision, to use as custom metrics
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Ground truth values |
required | |
y_pred |
The predicted values |
required |
Returns: float: metric
Source code in template_vision/models_training/utils_deep_keras.py
recall(y_true, y_pred)
Recall to use as a custom metrics
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Ground truth values |
required | |
y_pred |
The predicted values |
required |
Returns: float: metric
Source code in template_vision/models_training/utils_deep_keras.py
weighted_binary_crossentropy(pos_weight, target, output)
Weighted binary crossentropy between an output tensor and a target tensor. pos_weight is used as a multiplier for the positive targets.
Combination of the following functions: * keras.losses.binary_crossentropy * keras.backend.tensorflow_backend.binary_crossentropy * tf.nn.weighted_cross_entropy_with_logits
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pos_weight |
float
|
poid classe positive, to be tuned |
required |
target |
Target tensor |
required | |
output |
Output tensor |
required |
Returns: float: metric