Model class
ModelClass
Parent class for the models
Source code in template_vision/models_training/model_class.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
__init__(model_dir=None, model_name=None, level_save='HIGH', **kwargs)
Initialization of the parent class.
Kwargs
model_dir (str): Folder where to save the model If None, creates a directory based on the model's name and the date (most common usage) model_name (str): The name of the model level_save (str): Level of saving LOW: stats + configurations + logger keras - /! The model can't be reused /! - MEDIUM: LOW + hdf5 + pkl + plots HIGH: MEDIUM + predictions
Raises: ValueError: If the object level_save is not a valid option (['LOW', 'MEDIUM', 'HIGH']) NotADirectoryError: If a provided model directory is not a directory (i.e. it's a file)
Source code in template_vision/models_training/model_class.py
display_if_gpu_activated()
fit(df_train, **kwargs)
Trains the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_train |
DataFrame
|
Train dataset Must contain file_path & file_class columns if classifier Must contain file_path & bboxes columns if object detector |
required |
Returns: dict: Fit arguments, to be used with transfer learning fine-tuning
Source code in template_vision/models_training/model_class.py
get_and_save_metrics(y_true, y_pred, list_files_x=None, type_data='')
Gets and saves the metrics of a model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
?
|
Array-like [n_samples, 1] if classifier If classifier, class of each imageIf object detector, list of list of bboxes per image
|
required |
y_pred |
?
|
Array-like [n_samples, 1] if classifier If classifier, class of each imageIf object detector, list of list of bboxes per image
|
required |
Kwargs: list_files_x (list): Input images file paths type_data (str): Type of dataset (validation, test, ...) Returns: pd.DataFrame: The dataframe containing statistics
Source code in template_vision/models_training/model_class.py
inverse_transform(y)
Gets the final format of prediction - Classification : classes from predictions - Object detections : list of bboxes per image
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
list | ndarray
|
Array-like |
required |
Returns: List of classes if classifier List of bboxes if object detector
Source code in template_vision/models_training/model_class.py
predict(df_test, **kwargs)
Predictions on test set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_test |
DataFrame
|
DataFrame to be predicted, with column file_path |
required |
Returns: (np.ndarray | list): Array, shape = [n_samples, n_classes] or List of n_samples elements
Source code in template_vision/models_training/model_class.py
predict_proba(df_test, **kwargs)
Predicts probabilities on the test dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_test |
DataFrame
|
DataFrame to be predicted, with column file_path |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_vision/models_training/model_class.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved