Model aggregation regressor
ModelAggregationRegressor
Bases: ModelRegressorMixin
, ModelClass
Model for aggregating several regressor models
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|
aggregation_function
deletable
property
writable
Getter for aggregation_function
sub_models
deletable
property
writable
Getter for sub_models
__init__(list_models=None, aggregation_function='median_predict', **kwargs)
Initialization of the class (see ModelClass for more arguments)
Kwargs
list_models (list) : The list of model to be aggregated aggregation_function (Callable or str) : The aggregation function used
Raises: ValueError : If the object list_model has other model than model regressor (model_aggregation_regressor is only compatible with model regressor) ValueError : If the object aggregation_function is a str but not found in the dictionary dict_aggregation_function
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
fit(x_train, y_train, **kwargs)
Trains the model **kwargs enables Keras model compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_train |
?
|
Array-like, shape = [n_samples] |
required |
y_train |
?
|
Array-like, shape = [n_samples] |
required |
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
predict(x_test, return_proba=False, alternative_version=False, **kwargs)
Prediction
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
array-like or sparse matrix of shape = [n_samples, n_features] |
required |
return_proba |
bool
|
If the function should return the probabilities instead of the classes (Keras compatibility) |
False
|
Kwargs:
alternative_version (bool): If an alternative version (tf.function
+ model.__call__
) must be used for Keras models. Should be faster with low nb of inputs.
Returns:
(np.ndarray): Array of shape = [n_samples]
Raises:
ValueError: If return_proba=True
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
predict_proba(x_test, **kwargs)
Predicts the probabilities on the test set - raise ValueError
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
array-like or sparse matrix of shape = [n_samples, n_features] |
required |
Raises: ValueError: Models of type regressor do not implement the method predict_proba
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
prepend_line(file_name, line)
Insert given string as a new line at the beginning of a file
Kwargs
file_name (str): Path to file line (str): line to insert
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
reload_from_standalone(**kwargs)
Reloads a model aggregation from its configuration and "standalones" files Reloads list model from "list_models" files
Kwargs
configuration_path (str): Path to configuration file preprocess_pipeline_path (str): Path to preprocess pipeline aggregation_function_path (str): Path to aggregation_function_path
Raises: ValueError: If configuration_path is None ValueError: If preprocess_pipeline_path is None ValueError: If aggregation_function_path is None FileNotFoundError: If the object configuration_path is not an existing file FileNotFoundError: If the object preprocess_pipeline_path is not an existing file FileNotFoundError: If the object aggregation_function_path is not an existing file
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
mean_predict(predictions)
Returns the mean of predictions of each model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions |
np.ndarray)
|
The array containing the predictions of each models (shape (n_models)) |
required |
Return: (np.float64) : The mean of the predictions
Source code in template_num/models_training/regressors/model_aggregation_regressor.py
median_predict(predictions)
Returns the median of the predictions of each model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions |
np.ndarray)
|
The array containing the predictions of each models (shape (n_models)) |
required |
Return: (np.float64) : The median of the predictions