Model logistic regression classifier
ModelLogisticRegressionClassifier
Bases: ModelClassifierMixin
, ModelPipeline
Logistic Regression mode for classification
Source code in template_num/models_training/classifiers/models_sklearn/model_logistic_regression_classifier.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
__init__(lr_params=None, multiclass_strategy=None, **kwargs)
Initialization of the class (see ModelPipeline, ModelClass & ModelClassifierMixin for more arguments)
Kwargs
lr_params (dict) : Parameters for the Logistic Regression multiclass_strategy (str): Multi-classes strategy, 'ovr' (OneVsRest), or 'ovo' (OneVsOne). If None, use the default of the algorithm.
Raises: multiclass_strategy (str): Multi-classes strategy, 'ovr' (OneVsRest), or 'ovo' (OneVsOne). If None, use the default of the algorithm.
Source code in template_num/models_training/classifiers/models_sklearn/model_logistic_regression_classifier.py
predict_proba(x_test, **kwargs)
Predicts the probabilities on the test set 'ovo' can't predict probabilities : by default, return 1 for the predicted class, 0 otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
DataFrame
|
DataFrame with the test data to be predicted |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_num/models_training/classifiers/models_sklearn/model_logistic_regression_classifier.py
reload_from_standalone(**kwargs)
Reloads a model from its configuration and "standalones" files - /! Experimental /! -
Kwargs
configuration_path (str): Path to configuration file sklearn_pipeline_path (str): Path to standalone pipeline preprocess_pipeline_path (str): Path to preprocess pipeline
Raises: ValueError: If configuration_path is None ValueError: If sklearn_pipeline_path is None ValueError: If preprocess_pipeline_path is None FileNotFoundError: If the object configuration_path is not an existing file FileNotFoundError: If the object sklearn_pipeline_path is not an existing file FileNotFoundError: If the object preprocess_pipeline_path is not an existing file
Source code in template_num/models_training/classifiers/models_sklearn/model_logistic_regression_classifier.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved