Model xgboost classifier
ModelXgboostClassifier
Bases: ModelClassifierMixin
, ModelClass
Xgboost model for classification
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
__init__(xgboost_params=None, early_stopping_rounds=5, validation_split=0.2, **kwargs)
Initialization of the class (see ModelClass & ModelClassifierMixin for more arguments)
Kwargs
xgboost_params (dict): Parameters for the Xgboost -> https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier early_stopping_rounds (int): Number of rounds for early stopping validation_split (float): Validation split fraction. Only used if not validation dataset in the fit input
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
fit(x_train, y_train, x_valid=None, y_valid=None, with_shuffle=True, **kwargs)
Trains the model **kwargs permits compatibility with Keras model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_train |
?
|
Array-like, shape = [n_samples, n_features] |
required |
y_train |
?
|
Array-like, shape = [n_samples, n_targets] |
required |
Kwargs: x_valid (?): Array-like, shape = [n_samples, n_features] y_valid (?): Array-like, shape = [n_samples, n_targets] with_shuffle (bool): If x, y must be shuffled before fitting Raises: RuntimeError: If the model is already fitted
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
predict(x_test, return_proba=False, **kwargs)
Predictions on test set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
DataFrame
|
DataFrame with the test data to be predicted |
required |
Kwargs: return_proba (bool): If the function should return the probabilities instead of the classes (Keras compatibility) Returns: (np.ndarray): Array # If not return_proba, shape = [n_samples,] or [n_samples, n_classes] # Else, shape = [n_samples, n_classes]
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
predict_proba(x_test, **kwargs)
Predicts the probabilities on the test set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
DataFrame
|
DataFrame to be predicted -> retrieve the probabilities |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
reload_from_standalone(**kwargs)
Reloads a model from its configuration and "standalones" files - /! Experimental /! -
Kwargs
configuration_path (str): Path to configuration file xgboost_path (str): Path to standalone xgboost preprocess_pipeline_path (str): Path to preprocess pipeline
Raises: ValueError: If configuration_path is None ValueError: If xgboost_path is None ValueError: If preprocess_pipeline_path is None FileNotFoundError: If the object configuration_path is not an existing file FileNotFoundError: If the object xgboost_path is not an existing file FileNotFoundError: If the object preprocess_pipeline_path is not an existing file
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
MyMultiOutputClassifier
Bases: MultiOutputClassifier
Source code in template_num/models_training/classifiers/model_xgboost_classifier.py
fit(X, y, sample_weight=None, **fit_params)
Fit the model to data. Fit a separate model for each output variable. Parameters
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the estimator.fit
method of each step.
.. versionadded:: 0.23
Returns
self : object