Model tfidf svm
ModelTfidfSvm
Bases: ModelPipeline
Model for predictions via TF-IDF + SVM
Source code in template_nlp/models_training/models_sklearn/model_tfidf_svm.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
__init__(tfidf_params=None, svc_params=None, multiclass_strategy=None, **kwargs)
Initialization of the class (see ModelPipeline & ModelClass for more arguments)
Kwargs
tfidf_params (dict) : Parameters for the tfidf svc_params (dict) : Parameters for the SVC multiclass_strategy (str): Multi-classes strategy, 'ovr' (OneVsRest), or 'ovo' (OneVsOne). If None, use the default of the algorithm.
Raises: ValueError: If multiclass_strategy is not 'ovo', 'ovr' or None
Source code in template_nlp/models_training/models_sklearn/model_tfidf_svm.py
decision_function(x_test, **kwargs)
Predict confidence scores for samples
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: (?): Array, shape = [n_samples]
Source code in template_nlp/models_training/models_sklearn/model_tfidf_svm.py
get_predict_position(x_test, y_true, **kwargs)
Gets the order of predictions of y_true. Positions start at 1 (not 0)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
y_true |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Returns: np.ndarray: Array, shape = [n_samples]
Source code in template_nlp/models_training/models_sklearn/model_tfidf_svm.py
predict_proba(x_test, **kwargs)
Predicts the probabilities on the test set - /! THE SVM DOES NOT RETURN PROBABILITIES, HERE WE SIMULATE PROBABILITIES EQUAL TO 0 OR 1 /! -
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_nlp/models_training/models_sklearn/model_tfidf_svm.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved