Model tfidf lgbm
ModelTfidfLgbm
Bases: ModelPipeline
Model for predictions via TF-IDF + LGBM
Source code in template_nlp/models_training/models_sklearn/model_tfidf_lgbm.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
__init__(tfidf_params=None, lgbm_params=None, multiclass_strategy=None, **kwargs)
Initialization of the class (see ModelPipeline & ModelClass for more arguments)
Kwargs
tfidf_params (dict) : Parameters for the tfidf lgbm_params (dict) : Parameters for the lgbm multiclass_strategy (str): Multi-classes strategy, 'ovr' (OneVsRest), or 'ovo' (OneVsOne). If None, use the default of the algorithm.
Raises: ValueError: If multiclass_strategy is not 'ovo', 'ovr' or None
Source code in template_nlp/models_training/models_sklearn/model_tfidf_lgbm.py
predict_proba(x_test, **kwargs)
Probabilities prediction on the test dataset 'ovo' can't predict probabilities. By default we return 1 if it is the predicted class, 0 otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_nlp/models_training/models_sklearn/model_tfidf_lgbm.py
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved