Model class
ModelClass
Parent class for the models
Source code in template_nlp/models_training/model_class.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
|
__init__(model_dir=None, model_name=None, x_col=None, y_col=None, random_seed=None, level_save='HIGH', multi_label=False, **kwargs)
Initialization of the parent class.
Kwargs
model_dir (str): Folder where to save the model If None, creates a directory based on the model's name and the date (most common usage) model_name (str): The name of the model x_col (str | int): Name of the columns used for the training - x y_col (str | int | list if multi-labels): Name of the model's target column(s) - y random_seed (int): Seed to use for packages randomness level_save (str): Level of saving LOW: stats + configurations + logger keras - /! The model can't be reused /! - MEDIUM: LOW + hdf5 + pkl + plots HIGH: MEDIUM + predictions multi_label (bool): If the classification is multi-labels
Raises: ValueError: If the object level_save is not a valid option (['LOW', 'MEDIUM', 'HIGH']) NotADirectoryError: If a provided model directory is not a directory (i.e. it's a file)
Source code in template_nlp/models_training/model_class.py
display_if_gpu_activated()
fit(x_train, y_train, **kwargs)
Trains the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_train |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
y_train |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Source code in template_nlp/models_training/model_class.py
get_and_save_metrics(y_true, y_pred, x=None, series_to_add=None, type_data='')
Gets and saves the metrics of a model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
?
|
Array-like, shape = [n_samples, n_features] |
required |
y_pred |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Kwargs:
x (?): Input data - Array-like, shape = [n_samples]
series_to_add (list
Source code in template_nlp/models_training/model_class.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|
get_classes_from_proba(predicted_proba)
Gets the classes from probabilities
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted_proba |
ndarray
|
The probabilities predicted by the model, shape = [n_samples, n_classes] |
required |
Returns: predicted_class (np.ndarray): Shape = [n_samples, n_classes] if multi-labels, shape = [n_samples] otherwise
Source code in template_nlp/models_training/model_class.py
get_metrics_simple_monolabel(y_true, y_pred)
Gets metrics on mono-label predictions Same as the method get_and_save_metrics but without all the fluff (save, etc.)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
?
|
Array-like, shape = [n_samples, n_features] |
required |
y_pred |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Raises: ValueError: If not in mono-label mode Returns: pd.DataFrame: The dataframe containing statistics
Source code in template_nlp/models_training/model_class.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
|
get_metrics_simple_multilabel(y_true, y_pred)
Gets metrics on multi-label predictions Same as the method get_and_save_metrics but without all the fluff (save, etc.)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
?
|
Array-like, shape = [n_samples, n_features] |
required |
y_pred |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Raises: ValueError: If not with multi-labels tasks Returns: pd.DataFrame: The dataframe containing statistics
Source code in template_nlp/models_training/model_class.py
get_predict_position(x_test, y_true)
Gets the order of predictions of y_true. Positions start at 1 (not 0)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
y_true |
?
|
Array-like, shape = [n_samples, n_features] |
required |
Raises: ValueError: Not available in multi-labels case Returns: np.ndarray: Array, shape = [n_samples]
Source code in template_nlp/models_training/model_class.py
get_top_n_from_proba(predicted_proba, n=5)
Gets the Top n predictions from probabilities
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted_proba |
ndarray
|
The probabilities predicted by the model, shape = [n_samples, n_classes] |
required |
kwargs: n (int): Number of classes to return Raises: ValueError: If the number of classes to return is greater than the number of classes of the model Returns: list: top n predictions list: top n probabilities
Source code in template_nlp/models_training/model_class.py
init_from_standalone_files(model_dir=None, config_path=None, **kwargs)
classmethod
Init. a new model from a config file and standalone files.
The main purpose of this function is to be able to use an old model trained with an old version which is not unpicklable anymore. We should be able to recreate a new class object as this library tries to save all infos in a configuration file, and all models / tokenizers / etc. in standalone files.
The standalone files will be inferred from the model_dir argument, except if specific kwargs are provided.
To see which kwargs are available for your model, checks it's own _load_standalone_files
function.
Of course, the function will raise an error if model_dir
is None and no kwargs arguments are provided.
It will create a new folder for the reloaded model and copy many files in this new folder.
That may take some space in your hard disk.
WARNING : This function should be called with the class of the model to be reloaded. e.g. ModelEmbeddingLstm.init_from_standalone_files(...)
Kwargs
model_dir (str): Absolute path of the folder containing the model to load. If None, config_path must be set. config_path (str): Absolute path to a configuration file. If None, backups on the model_dir defaults configuration file. If None, model_dir must be set.
Raises: ValueError: If both model_dir and config_path are None. Returns: ModelClass: The loaded model dict: The model configuration
Source code in template_nlp/models_training/model_class.py
inverse_transform(y)
Gets a list of classes from the predictions
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
?
|
Array-like, shape = [n_samples, n_classes], arrays of 0s and 1s OR 1D array shape = [n_classes] (only one prediction) |
required |
Raises: ValueError: If the size of y does not correspond to the number of classes of the model Returns: List of tuple if multi-labels and several predictions Tuple if multi-labels and one prediction List of classes if mono-label
Source code in template_nlp/models_training/model_class.py
load_configs(model_dir=None, config_path=None)
staticmethod
Loads a model's configuration file as a dictionary
Kwargs
model_dir (str): Absolute path of the model. Can be None to load a configuration path as it is, but config_path can't also be None. config_path (str): Absolute path to a configuration file. Backup on the model_dir defaults configuration file. Most of the time, you should leave this empty.
Raises: ValueError: If both model_dir and config_path are None. Returns: dict: A model's configurations
Source code in template_nlp/models_training/model_class.py
load_model(model_dir, config_path=None, **kwargs)
classmethod
Loads a model from a path or a model name
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_dir |
str
|
Absolute path of the folder containing the model to load |
required |
Kwargs: config_path (str): Absolute path to a configuration file. Backup on the model_dir defaults configuration file. Most of the time, you should leave this empty. Returns: ModelClass: The loaded model dict: The model configuration
Source code in template_nlp/models_training/model_class.py
predict(x_test, **kwargs)
Predictions on the test set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_nlp/models_training/model_class.py
predict_proba(x_test, **kwargs)
Predicts probabilities on the test dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: (np.ndarray): Array, shape = [n_samples, n_classes]
Source code in template_nlp/models_training/model_class.py
predict_with_proba(x_test, **kwargs)
Predicts on the test set with probabilities
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_test |
?
|
Array-like or sparse matrix, shape = [n_samples, n_features] |
required |
Returns: predicted_class (np.ndarray): The predicted classes, shape = [n_samples, n_classes] predicted_proba (np.ndarray): The predicted probabilities for each class, shape = [n_samples, n_classes]
Source code in template_nlp/models_training/model_class.py
reload_from_standalone(*args, **kwargs)
classmethod
save(json_data=None)
Saves the model
Kwargs
json_data (dict): Additional configurations to be saved