VISION Framework
Project structure
Here is the structure of a project generated with generate_vision_project
command :
.
├─ template_vision # your application package
│ ├─ models_training # global config and utilities
│ │ └─ classifiers # package containing some predefined classifiers
│ │ ├─ object_detectors # package containing some predefined object detectors
│ │ ├─ ...
│ │ ├─ model_class.py # module containing base Model class
│ │ └─ utils_models.py # module containing utility functions
│ │
│ ├─ monitoring # package containing monitoring utilities (mlflow, model explicability)
│ │
│ ├─ preprocessing # package containing preprocessing logic
│ │
│ ├─ __init__.py
│ └─ utils.py
│
├─ template_vision-data # Folder where to store your data
├─ template_vision-exploration # Folder where to store your exploratory notebooks
├─ template_vision-models # Folder containing trained models
├─ template_vision-scripts # Folder containing script for preprocessing, training, etc.
├─ template_vision-tutorials # Folder containing a tutorial notebook
.
.
.
├─ makefile
├─ setup.py
└─ README.md
Computer vision framewrok specificities
-
The expected input data format is different than in the other frameworks.
-
For image classification, 3 differents formats can be used :
- A root folder with a subfolder per class (containing all the images associated with this class)
- A unique folder containing every image where each image name is prefixed with its class
- A folder containing all the images and a .csv metadata file containing the image/class matching
-
For object detection, you must provide a .csv metadata file containing the bounding boxes for each image