NLP Framework
Project structure
Here is the structure of a project generated with generate_nlp_project
command :
.
├─ template_nlp # your application package
│ ├─ models_training # global config and utilities
│ │ ├─ models_sklearn # package containing some predefined scikit-learn models
│ │ ├─ models_tensorflow # package containing some predefined tensorflow models
│ │ ├─ model_class.py # module containing Model base class
│ │ ├─ ...
│ │ └─ utils_models.py # module containing utility functions
│ │
│ ├─ monitoring # package containing monitoring utilities (mlflow, model explicability)
│ │
│ ├─ preprocessing # package containing preprocessing logic
│ │
│ ├─ __init__.py
│ └─ utils.py
│
├─ template_nlp-data # Folder where to store your data
├─ template_nlp-exploration # Folder where to store your exploratory notebooks
├─ template_nlp-models # Folder containing trained models
├─ template_nlp-scripts # Folder containing script for preprocessing, training, etc.
├─ template_nlp-tutorials # Folder containing a tutorial notebook
.
.
.
├─ makefile
├─ setup.py
└─ README.md
Warning
If you used a custom preprocessing function funcA
with FunctionTransformer
, be aware that the pickled pipeline
may not return wanted results if you later modify funcA
definition.
Please check gabarit/issues/63